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In silico design and optimization of 
selective membranolytic anticancer 
peptides
Gisela Gabernet1, Damian Gautschi1, Alex T. Müller1, Claudia S. Neuhaus   1, Lucas Armbrecht   2, 
Petra S. Dittrich   2, Jan A. Hiss1 & Gisbert Schneider1

Membranolytic anticancer peptides represent a potential strategy in the fight against cancer. However, 
our understanding of the underlying structure-activity relationships and the mechanisms driving 
their cell selectivity is still limited. We developed a computational approach as a step towards the 
rational design of potent and selective anticancer peptides. This machine learning model distinguishes 
between peptides with and without anticancer activity. This classifier was experimentally validated by 
synthesizing and testing a selection of 12 computationally generated peptides. In total, 83% of these 
predictions were correct. We then utilized an evolutionary molecular design algorithm to improve 
the peptide selectivity for cancer cells. This simulated molecular evolution process led to a five-fold 
selectivity increase with regard to human dermal microvascular endothelial cells and more than ten-
fold improvement towards human erythrocytes. The results of the present study advocate for the 
applicability of machine learning models and evolutionary algorithms to design and optimize novel 
synthetic anticancer peptides with reduced hemolytic liability and increased cell-type selectivity.

Cancer therapy faces the challenge of resistance to chemotherapeutics and receptor-targeted anticancer agents. 
Several cell resistance mechanisms, such as drug inactivation or efflux, target protein alteration, DNA damage 
repair and signaling cascade alteration have been identified1,2. Moreover, the indiscriminate action of most chem-
otherapeutics towards all rapidly dividing cells causes a variety of severe side effects3,4. Membranolytic anticancer 
peptides (ACPs) represent a new class of potential cancer therapeutics. Their receptor-independent mechanism 
of action may hinder the development of cellular resistance3–5. Nevertheless, the underlying structure-activity 
relationship that explains the membranolytic properties of these peptides is not completely understood. Peptide 
amphipathicity, moderate overall hydrophobicity, and a positive net charge are known requirements for ACP 
activity6–9. However, no simple combination of these properties has been found sufficient to fully explain the 
activity and selectivity of ACPs towards cancer cells10. Producing novel peptides lacking toxicity against nonneo-
plastic cells also remains challenging11. Various machine learning methods have been successfully applied to guide 
the rational design of both ACPs12–18 and antimicrobial peptides (AMPs)19,20, as well as other membrane-active 
peptides21. The lack of a systematic annotation of the selectivity of ACPs towards cancer cells in the literature and 
in peptide databases has hindered the development of predictive models that take selectivity into account. There 
is a need for innovative methods that do not require selectivity data for peptide optimization.

Simulated molecular evolution (SME) is a stochastic optimization algorithm pioneered in the 1990s for com-
putational peptide design22–24. SME belongs to the class of evolutionary algorithms, which also includes genetic 
algorithms, and enables the optimization of peptide properties that are encoded in a theoretical fitness function 
or in combination with an experimental fitness evaluation when structure-activity relationships cannot be deter-
mined a priori. We have recently applied this design concept to generate innovative membrane-targeting pep-
tides25,26. Here, we present a peptide design approach that is based on a novel ACP prediction model and on SME 
for the optimization of ACP selectivity for cancer cells. The predictive machine learning model led to the discov-
ery of four novel synthetic ACPs with low-micromolar activity (1–20 µM) against A549 lung cancer and MCF7 
breast cancer cells. One of these peptides was then subjected to SME. After the first iteration of the optimization 
process, we obtained a novel ACP that showed micromolar activities against a range of cancer cell types with 
significantly reduced activity towards human dermal microvascular cells (HDMEC) and human erythrocytes. 
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The results of this study advocate for machine-learning models in combination with computational sequence 
generators for designing and optimizing functional peptides in silico.

Results and Discussion
ACP classifier model.  We developed a machine learning model to classify peptides into ACPs and non-
ACPs based on their amino acid sequence representations. The machine-learning classifier was trained on “pos-
itive” (ACPs, active) and “negative” (non-ACPs, inactive) peptides. We retrieved alpha-helical ACPs from the 
CancerPPD database27 as positive examples (N = 339). For the negative class, we retrieved alpha-helices from 
nontransmembrane proteins in the PDB database28 (N = 680). All amino acid sequences were represented 
numerically in a computer-readable form by the use of molecular descriptors. For this purpose, we utilized a 
combination of PEPCATS pharmacophore feature descriptors29 and four global properties, namely, Eisenberg’s 
hydrophobicity, Eisenberg’s hydrophobic moment30, charge density, and peptide length (number of residues). The 
PEPCATS descriptor represents the amino acid sequences as binary vectors indicating cross-correlated pharma-
cophore features of the individual amino acids (hydrophobic, aromatic, hydrogen-bond acceptor, hydrogen-bond 
donor, positively ionizable, negatively ionizable). The cross-correlation of pharmacophoric feature pairs is deter-
mined within a sliding sequence window encompassing seven residues. The resulting 151-dimensional descriptor 
vector was reduced to an 18-dimensional feature vector by covariance elimination and sequential feature elimina-
tion (Fig. S1, Supplementary Information). The dataset was split into a training set (2/3) and an independent test 
set (1/3) by stratified sampling, preserving the proportion between the positive and negative classes. Two machine 
learning algorithms were considered for model development: random forests31 and support vector machines 
(SVM)32. We optimized the SVM model’s hyperparameter by 10-fold cross-validation on the training data and 
chose a linear kernel for SVM training to enable straightforward feature interpretation. The performance of both 
classifiers exceeded 0.9 for both the training and the test data for all calculated metrics (Table 1). The SVM model 
was selected for further analysis due to the robustness of its decision function, which is determined solely by the 
support vectors and therefore unaltered by the addition of new data points that lie outside the decision margin32. 
Additionally, an analytical decision function as a linear combination of the model features can be extracted from 
linear support vector machines, whose weights indicate feature importance for the classification problem32.

We then compared the performance on the test dataset for our SVM model to online available ACP predic-
tion tools, specifically the AntiCP models 1 and 213, the iACP model33, and the MLACP model18. These ACP 
prediction models are also based on an SVM classifier but utilize different descriptors and training data (Table S1, 
Supplementary Information). The prediction performance of the four classifiers and our SVM model was assessed 
on the independent test dataset (Table 2). In this experiment, the performance of our SVM model on the inde-
pendent test set was superior to all four publicly available ACP prediction models in terms of all performance 
metrics, except for precision. The MLACP model showed higher precision but lower Matthews correlation coeffi-
cient (MCC), accuracy and recall than the other models. Therefore, the MLACP model is better at avoiding false 
positives but retrieves a higher number of false negatives compared to the SVM model developed in this study.

Feature importance for ACP activity.  We analyzed the feature weights of the SVM classifier to gain an 
understanding of important discriminatory features for distinguishing between ACPs and non-ACPs (Table 3, 
Fig. S2, Supplementary Information). Features were ranked by their absolute weight values as a measure of their 
relative importance for ACP classification. The global hydrophobicity (H), hydrophobic moment (µH) and the 
frequency of positively charged amino acid pairs separated by one residue (PPd2) were identified as important 

Metrics

Support Vector Machine Random Forest

CV score
Train 
score Test score CV score

Train 
score Test score

MCC 0.88 ± 0.05 0.91 0.90 0.90 ± 0.05 1 0.91

Accuracy 0.94 ± 0.02 0.96 0.96 0.95 ± 0.02 1 0.96

Precision 0.89 ± 0.04 0.92 0.91 0.96 ± 0.03 1 0.97

Recall 0.95 ± 0.06 0.96 0.95 0.90 ± 0.06 1 0.90

Table 1.  Performance of support vector machine and random forest models for ACP prediction. Scores 
obtained from ten-fold cross-validation (CV) score (mean ± std), on the whole training dataset (Train score) 
and the independent test dataset (Test score) for the support vector machine and random forest models.

Metrics
AntiCP 
Model 1

AntiCP 
Model 2 iACP MLACP

MCC −0.04 0.81 0.51 0.84

Accuracy 0.29 0.92 0.77 0.93

Precision 0.29 0.81 0.58 0.96

Recall 0.99 0.92 0.78 0.80

Table 2.  Comparison of the model performance (Test score) with other online available ACP prediction tools 
calculated by using the independent test set. The Matthews correlation coefficient (MCC), accuracy, precision 
and recall were used as metrics (Methods Eqs 1–4).
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features of the classifier (weight values w = 1.65, w = 0.5 and w = 0.39, respectively). This finding is in accordance 
with previous reports on ACPs that highlight the relevance of the hydrophobicity, the hydrophobic moment and 
a net positive charge for anticancer activity7,34. The peptide length was also identified as a discriminatory feature 
(w = 0.4), indicating that longer peptides were considered more likely to be active. Two features that take into 
account the frequency of amino acids with hydrogen-bond donor and acceptor groups (ADd0, DDd0) were 
identified as bearing the greatest absolute weights (w = −1.94 and w = 1.67, respectively), emphasizing their role 
in distinguishing ACPs from inactive peptides (Table 3).

De novo design of ACPs.  To make use of the SVM model for the in silico design of novel ACPs, we gen-
erated three virtual peptide libraries of 100,000 peptides each, based on different design principles (Fig. S3, 
Supplementary Information):

	(1)	 The Helical library contains peptides with the position-dependent amino acid distribution of alpha-helical 
ACPs11.

	(2)	 The Amphipathic Arc library contains amphipathic peptides with differently sized hydrophobic arcs and a 
high probability of being cationic.

	(3)	 The Gradient library contains amphipathic peptides that possess a linear hydrophobic gradient.

We predicted the activity of the peptides from each library with our SVM model (Fig. S4, Supplementary 
Information). More than 80% of the peptides from the Amphipathic Arc and Gradient libraries and more than 60% 
of the peptides from the Helical library received an SVM score >0.5, indicating potential actives. In contrast, only 
10% of peptides with random sequences were predicted to be active. The design principles, therefore, enriched the 
libraries with potentially active peptides in contrast with random peptide generation.

The similarity of the peptides in the training data was analyzed to consider the applicability domain of the SVM 
model35; this domain is the chemical space in which the model predictions may be considered reliable. The SVM 
model was utilized to estimate the pseudo-probabilities (i.e., the probabilities predicted by the model) of the peptides 
to belong to the active and inactive classes. These scores were subsequently weighted by the similarity to the training 
data to obtain similarity-weighted scores that consider the model’s applicability domain (φACP, φNeg, Eqs 5 and 6).

From each peptide library, we selected the two peptides with the highest φACP and φNeg scores. None of the 
peptides were found in the training data or the CancerPPD database. No peptides were retrieved from the 
CancerPPD database with >95% similarity to the selected ones, as determined by the CD-HIT program36. We 
finally synthesized the 12 peptides and determined their half-effective concentration (EC50) values against the 
MCF7 and A549 cancer cell lines. For 10 of the 12 synthesized peptides, the predictions were correct (Table 4). 
All of the peptides predicted to be inactive did not kill more than 50% of the cancer cells at a concentration of 
50 µM. Of the six peptides predicted to be active, two were determined to be false positives (inactive at 50 µM) 
(Figs S10 and S11, Supplementary Information). Of the four correctly predicted active peptides, three were active 
in a low-micromolar range against both of the tested cancer cell lines, and the fourth (Gradient2) showed activity 
solely against MCF7 cells (Table 4).

Feature Weight Description

ADd0 −1.94 Frequency of amino acids with hydrogen-bond acceptor and donor groups (T, C, Q, N, S and Y)

DDd0 1.67 Frequency of amino acids with hydrogen-bond donor groups (K, T, C, Q, H, R, W, N, S and Y)

H 1.65 Global peptide hydrophobicity (Eisenberg consensus scale30)

RPd0 −0.72 Frequency of aromatic amino acids with a positively ionizable group (H)

ADd2 0.65 Frequency of amino acids with hydrogen-bond acceptor and amino acids with donor groups at distance 2

µH 0.50 Peptide hydrophobic moment

LDd0 0.40 Frequency of lipophilic amino acids with hydrogen-bond donor groups

Len 0.40 Peptide length

PPd2 0.39 Frequency of amino acids with positively ionizable groups at distance 2

RPd5 0.38 Frequency of aromatic amino acids and amino acids with positively ionizable groups at distance 5

APd6 −0.38 Frequency of amino acids with hydrogen-bond acceptor groups and amino acids with positively ionizable groups 
at distance 6

RAd3 −0.26 Frequency of amino acids with hydrogen-bond acceptor and amino acids with donor groups at distance 3

RAd2 −0.25 Frequency of amino acids with hydrogen-bond acceptor and amino acids with donor groups at distance 2

APd1 −0.25 Frequency of amino acids with hydrogen-bond acceptor groups and amino acids with positively ionizable groups 
at distance 1

DNd1 −0.16 Frequency of amino acids with hydrogen-bond donor groups and amino acids with negatively ionizable groups at 
distance 1

APd2 −0.11 Frequency of amino acids with hydrogen-bond acceptor groups and amino acids with positively ionizable groups 
at distance 2

RPd2 −0.08 Frequency of aromatic amino acids and amino acids with positively ionizable groups at distance 2

RRd6 0.02 Frequency of aromatic amino acids at distance 6

Table 3.  The 18 features obtained after covariance elimination and sequential feature selection. The top scoring 
features are ranked by their absolute support vector machine weight values, as a measure of their relative 
importance for ACP classification. An interpretation of each feature is provided.
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The AmphiArc2 peptide, the shortest peptide of the low micromolar active peptides, has a high hydrophobic 
moment (µH = 0.87) and a 180° arc of hydrophobic residues in an idealized helical structure (Fig. 1a). As deter-
mined by circular dichroism (CD) spectroscopy, the AmphiArc2 peptide is unstructured in pure water but adopts 
an alpha-helical structure in a hydrophobic environment (in 50% v/v water:2,2-trifluoroethanol, TFE) (Fig. 1b). 
Helix formation in a hydrophobic, membrane-like environment has been shown to be a characteristic of certain 
alpha-helical AMPs and ACPs37,38. To further investigate its membranolytic action, we observed the activity of 
AmphiArc2 on single MCF7 cells entrapped in a microfluidic chip. Video recordings showed morphological 
changes in the cell membrane and leakage of the cytosolic components as early as 30 seconds after initial contact 
with the peptide in the cells (Fig. 1c, Supplementary Information, Video SV1). After 95 seconds, the dye encapsu-
lated in the cancer cell had leaked out, and the cell membrane showed deformations and blebbing.

After characterizing the anticancer activity of the AmphiArc2 peptide, we tested its cell-type selectivity. We 
determined its EC50 value against the noncancer HDMEC primary cell line and half-effective hemolytic concen-
tration (HC50) against human erythrocytes (Fig. 1d). Both values were found to be in the same low-micromolar 
range as the EC50 against cancer cell lines, indicating toxicity of this peptide against noncancer cells.

Selectivity optimization of a de novo designed ACP.  We applied the SME algorithm to improve the 
selectivity of the AmphiArc2 peptide towards noncancer cells. SME contained a variation (mutation) and a selec-
tion operator (Fig. 2a). By variation, a series of offspring was generated from a parent sequence. The fittest off-
spring of a generation was selected and used as a parent in the next SME iteration. In this study, parents were 
selected among the offspring that maintained anticancer activity but showed enhanced selectivity for cancer cells 
(selection operator). The mutations in the sequence variation step were performed according to a normalized 
Gaussian probability distribution of pairwise amino acid similarity (dij) (Fig. 2b). As a similarity measure, we 
utilized the Grantham matrix, which takes into account the atom composition, the polarity and the molecular 
volume of the residues39. The probability of substitution of residue i to residue j decreases with decreasing pair-
wise amino acid similarity. The degree of similarity of the offspring peptides to the parent sequence (offspring 
diversity) was controlled via the sigma (σ) parameter (Fig. 2b). A higher sigma value allowed the generation of 
sequences further away from the parent peptide (Fig. S5, Supplementary Information).

We performed a total of three SME iterations, starting from the AmphiArc2 peptide. In the first iteration, 
we generated 10 offspring peptides with σ = 0.1 (Fig. 2c). The mutations introduced by this sigma value were 
conservative amino acid changes that maintained the overall amphipathicity of the peptide. We synthesized 
and tested all ten offspring peptides of the three SME generations against the MCF7 and A549 cancer cell lines 
to determine their anticancer activity. For selectivity assessment, we tested their activity against the noncancer 
HDMEC primary cell line and measured their hemolytic activity on human erythrocytes (Fig. 2d).

The results obtained demonstrate that small conservative amino acid replacements affected the activity and 
selectivity of these ACPs while conserving their overall amphipathic helical structure in a lipophilic environ-
ment. Offspring n.2 (Off2) maintained the low-micromolar activity of the AmphiArc2 peptide against the A549 
and MCF7 cancer cells but showed a 12-fold reduction of hemolytic activity against human erythrocytes and a 
ten-fold reduction of activity against HDMEC cells (Fig. 2d). Therefore, we selected Off2 as the parent for the next 
SME iteration (Fig. 3), in which ten new peptides were generated (Off2.1 to Off2.10).

The second generation of peptide variation did not achieve meaningful selectivity improvements with respect 
to HDMEC cells (Fig. S7, Supplementary Information). Five of the offspring peptides (Off2.1, Off2.3, Off2.4, 
Off2.9, Off2.10) were inactive. This loss of activity correlated with the introduction of a proline residue in the 
sequence (Fig. S7, Supplementary Information). Prolines affect alpha-helical conformation by introducing helix 
kinks and breaks40. We corroborated this secondary structure disruption with circular dichroism analysis of 
Off2.1, Off2.3, Off2.4 and Off2.9 (Fig. S9, Supplementary Information).

Peptide Sequencea φACP φNeg Predictionb MCF7 EC50/µM A549 EC50/µM Outcomec

Helical1 FLWIKLGKLAGAVLKLILGLKKVV 0.94 0.45 + 4.4 ± 1.3 8.3 ± 2.0 TP

Helical2 GLWAIAVKAGKVILKLIVFIWIRV 0.94 0.45 + >50 >50 FP

Helical3 GLLDIAGGNAETLAGHAV 0.44 0.90 − >50 >50 TN

Helical4 GLFDVIGSQAGGAAPHFLG 0.46 0.89 − >50 >50 TN

AmphiArc1 KWVKKVHNWLRRWIKVFEALFG 0.96 0.46 + 7.0 ± 0.5 18.4 ± 0.7 TP

AmphiArc2 KIFKKFKTIIKKVWRIFGRF 0.95 0.46 + 5.7 ± 0.7 9.3 ± 1.5 TP

AmphiArc3 AFRHSVKEELNYIRRRLERFPNRL 0.42 0.91 − >50 >50 TN

AmphiArc4 RIENGLRKRLQSIYRHLEE 0.42 0.91 − >50 >50 TN

Gradient1 KWVRIWIKVLRGLFVWVWFF 0.96 0.46 + >50 >50 FP

Gradient2 AWLKRIKKFLKALFWVWVW 0.96 0.46 + 19.0 ± 1.8 >50 TP

Gradient3 KVVDNFENILII 0.40 0.85 − >50 >50 TN

Gradient4 RVNAAIPNIIV 0.41 0.84 − >50 >50 TN

Table 4.  Experimental validation of the SVM prediction model. The peptides from each virtually designed 
library were evaluated according to a similarity-weighted score for belonging to the positive (φACP) and negative 
(φNeg) class. The two peptides with the highest φACP and φNeg scores for each library were synthesized and tested 
for anticancer activity on breast adenocarcinoma (MCF7) and lung adenocarcinoma (A549) cell lines (EC50, 
mean ± std, N = 3). aAll peptides were synthesized with amidated C-termini; bPrediction: +predicted to be 
active, − predicted to be inactive; cOutcome: TP: true positive, FP: false positive, TN: true negative.
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In the third SME generation (Off2.2.1 – Off2.2.10), we actively omitted proline residues and reduced the sigma 
value from 0.1 to 0.06 to explore close analogs of Off2 and Off2.2 (Fig. S8, Supplementary Information). Off2.2.10 
showed decreased activity towards the noncancer HDMEC primary cells (Fig. 3d). This increase in selectivity was 
accompanied by a decreased activity against both the A549 and MCF7 cell lines.

The most active, but nonselective, AmphiArc2 parent peptide and the most cancer-cell selective Off2.2.10 
peptide possess several differences and commonalities in their physicochemical properties. Even though both 
peptides display a hydrophobic arc of 180°, the hydrophobic moment of Off2.2.10 (µH = 0.64) is lower than that of 
AmphiArc2 (µH = 0.87) (Fig. 3c). The parent peptide bears eight positive charges, while Off2.2.10 contains seven 
positively ionizable residues caused by the N-terminal K1Q mutation. This moderate reduction of both the hydro-
phobic moment and the net positive charge improved the peptide selectivity for cancer cells and reduced the risk 
of killing non-transformed cells. To further explore these sequence features, we analyzed the ratios of the EC50 
in the noncancer cells and in the cancer cell lines of all tested peptides. The more selective peptides (higher EC50 
ratio) are characterized by moderate hydrophobic moments and charge densities (Supplementary Information, 
Fig. S10), suggesting a guideline for optimizing the cancer-cell selectivity of ACPs. This observation is in accord-
ance with reports stating that decreasing the hydrophobic moment of helical ACPs reduces both their hemolytic 
potential and anticancer activity7–9.

NCI-60 cancer cell panel testing.  The ACP candidates AmphiArc2 (parent), Off2 and Off2.2.10 were 
tested on the NCI-60 cancer cell panel41. The three tested peptides inhibited the growth of all the cancer cell lines 
in the NCI-60 panel at a low micromolar concentration (Table 5, Supplementary Information Table S3). This 
result corroborated the wide-spectrum effect of the anticancer peptides across a range of cancer types. Both the 
activity of Off2 and Off2.2.10 peptides on the cell lines tested were significantly lower than the anticancer activity 

Figure 1.  Characterization of the AmphiArc2 peptide. (a) Helical wheel plot of the peptide sequence with 
annotated hydrophobic moment direction and magnitude (µH). Polar residues are shown in light blue, positively 
charged residues in dark blue, hydrophobic residues in yellow, and aromatic residues in orange. (b) Circular 
dichroism spectra of the peptide in water (blue) and in a 50% v/v TFE:water solution (red). (c) Time sequence 
of cell death of a single MCF7 cell trapped in a microfluidic chamber after exposure to the AmphiArc2 peptide. 
The cells were fluorescently labeled with calcein-AM dye in the cytosol, and their membrane was stained with 
fluorescently labeled EpCAM antibody. The scale bar represents 10 µm. (d) EC50 values of the peptide activity 
against the A549 and MCF7 cancer cells, noncancer HDMEC primary cells and the hemolytic activity (HC50) 
value of the peptide activity against human erythrocytes are shown. Error bars show the standard deviation of 
N = 3 independent experiments.
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Figure 2.  Peptide selectivity optimization by simulated molecular evolution (SME). (a) Principle of the iterative 
variation or mutation and selection steps in SME, starting with the model parent peptide “ANTICANCER”. 
(b) Probability of the mutation of amino acid residue i in the parent sequence to residue j in the offspring as a 
function of the amino acid pairwise similarity (dij). The sigma (σ) parameter controls the sequence diversity 
among the offspring. (c) Comparison of the 10 generated offspring sequences and their Euclidean distance to 
the parent sequence according to the Grantham similarity matrix. The [0, 1] normalized Shannon entropy (in 
bit in the graph) of each residue position is shown below. Residue coloring is as follows: light blue: polar, dark 
blue: positively ionizable, red: negatively charged, yellow: hydrophobic, orange: aromatic, green: proline. (d) 
Peptide activity towards the A549 and MCF7 cancer cell lines (EC50), the noncancer HDMEC primary cells 
(EC50), and the human erythrocytes (HC50). The error bars give the standard deviation of N = 2 independent 
measurements with six technical replicates each.
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of the AmphiArc2 peptide (p-value = 4.9 × 10−13 and 1.7 × 10−12, respectively, Welch two sample t-test), suggest-
ing that the initial increased cancer cell selectivity comes at a cost of an activity loss. No significant anticancer 
activity difference was found between Off2 and Off2.2.10 peptides (p-value = 0.66, Welch two sample t-test), 
indicating that the additionally improved anticancer selectivity does not affect the average anticancer activities 
of these two peptides.

Conclusions
In this study, the combination of a machine learning model and the SME algorithm resulted in ACPs with 
low-micromolar potency against a wide variety of cancer cells (NCI-60 panel) and selectivity with respect to 
non-transformed cells (HDMEC) and human erythrocytes. The machine-learning classifier alone was able to 
identify active peptides but was insufficient to identify cancer cell selective peptides. Virtual screening of com-
putationally designed peptide libraries with the implemented machine-learning classifier led to the discovery 
of four novel ACPs as the starting point for selectivity optimization by SME. In the first design-synthesize-test 
cycle, peptide hemolysis was reduced ten-fold, and after three cycles, peptide activity towards noncancer cells was 

Figure 3.  Characterization of the parent peptides and the most selective offspring peptides from three 
subsequent SME generations. (a) Amino acid sequences; red residues denote sequence changes from the 
respective parent sequence. (b) Circular dichroism spectra in water (blue) and a mixture of 50% v/v TFE:water. 
(c) Helical wheel plots with hydrophobic moment direction and magnitude (µH). Residue coloring: polar residues 
in light blue, positively ionizable residues in dark blue, hydrophobic residues in yellow, and aromatic residues 
in orange. (d) Peptide activity towards the A549 and MCF7 cancer cell lines (EC50), the noncancer HDMEC 
primary cells (EC50), and the human erythrocytes (HC50). The error bars represent the standard deviation of three 
independent measurements. **p-value < 0.01, ***p-value < 0.001 of the mean differences (Welch t-test).
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reduced more than 20-fold while retaining anticancer activity compared to the parent peptide (AmphiArc2). The 
results of this study advocate for the SME method for experiment-guided peptide design and for exploration of 
the ACP structure-activity landscape. SME is applicable to all kinds of experimental readouts and provides an 
alternative to more conventional peptide optimization techniques, e.g., alanine scanning. At the same time, the 
results suggest that additionally increased cancer cell selectivity of membranolytic ACPs might come at the price 
of reduced peptide potency. This working hypothesis provides a basis for future study.

Methods
Machine learning model.  Both machine learning models were constructed in Python v2.7 using the 
Scikit-Learn v0.18 library. For model training, the peptide dataset was split into 2/3 training and 1/3 testing 
subsets. Random forest classifier: the number of trees (“n_estimators”) was set to 500, and the number of features 
to be considered by each tree (“max_features”) was set to the squared root of all features (“sqrt”). SVM classifier: 
a linear kernel was employed and hyperparameter C was optimized by a ten-fold cross-validation in which the 
model is trained on 90% of the training data and validated on the remaining 10% in ten repetitions of training. 
The obtained mean of the 10 repetitions (cross-validation MCC score) was used to evaluate the performance of 
the models. The test scores were obtained with the independent test set.

Scoring metrics.  The Matthews correlation coefficient (MCC, Eq. 1), accuracy (Eq. 2), precision (Eq. 3) and 
recall (Eq. 4) were calculated. TP, FP, TN and FN correspond to the number of true positives, false positives, true 
negatives and false negatives predicted by the model, respectively.

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN( )( )( )( ) (1)

=
+

+ + +
Accuracy TN TP

TN TP FN FP (2)

=
+

Precision TP
TP FP (3)

=
+

Recall TP
TP FN (4)

Data weighted scoring functions.  To appropriately consider the applicability domain of the SVM classifier, the 
final scoring function for ACPs (φACP, Eq. 5) and inactive (negative) peptides (φNeg, Eq. 6) considers both the 
pseudo-probability of the peptide to be an ACP (PACP) as predicted by the SVM model and the similarity of the 
predicted peptides to the training data (Sim. score). k-means clustering with k = 3 was performed with Python 
v2.7 and the Scikit-Learn v0.18 library package. The similarity score is calculated as the inverse of the Euclidean 
distance in descriptor space of the peptides to the three centroids.

φ =
+ .P Sim score

2 (5)ACP
ACP

φ =
− + .P Sim score(1 )

2 (6)Neg
ACP

AmphiArc2 log GI50 Off2 log GI50 Off2.2.10 log GI50

Leukemia −5.5 −5.2 −5.3

Lung −5.6 −5.4 −5.2

Colon −5.6 −5.2 −5.1

CNS −5.6 −5.2 −5.2

Melanoma −5.6 −5.3 −5.2

Ovarian −5.6 −5.2 −5.2

Renal −5.7 −5.3 −5.2

Prostate −5.7 −5.5 −5.4

Breast −5.6 −5.4 −5.4

Table 5.  Cellular growth inhibition of 60 cell lines in the NCI-60 cancer cell test for the AmphiArc2 (Parent), 
Off2 and Off2.2.10 peptides. The averaged peptide activity for the cancer types tested is shown as the logarithm 
of the half growth inhibitory concentration (GI50, Supplementary Information Eq. S1), which is the molar 
concentration of peptide needed to inhibit half of the normal cancer cell growth. The logarithm of GI50 is shown 
here as 10n M. The values from −5 to −6 correspond to growth inhibition in the 1–10 µM range. The growth 
inhibition values for the individual cell lines are displayed in Supplementary Information Table S4.
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Virtual peptide libraries.  Three virtual peptide libraries were generated according to three different design 
principles. For each library, the peptide length was restricted to a range of 11 to 30 amino acids, as peptides able 
to fold in an alpha-helix are typically inside this range42. Duplicate sequences were eliminated, and the similarity 
of the sequences was restricted with the CD-HIT36 program to a threshold of 0.8 similarity. A total of 106 peptides 
were selected from each of the libraries.

•	 Helical library. The Helical library was generated with the position-dependent amino acid distributions of 62 
anuran and hymenopteran alpha-helical ACPs11 in amino acid positions 1–18 (exactly 5 helical turns). For 
longer peptides, the pattern was repeated. The method to generate this library is included in the modlAMP43 
Python package (modlamp.sequences.HelicesACP).

•	 Amphipathic Arc library. The design principle of the Amphipathic Arc library was amphipathic peptide 
sequences, which would potentially be alpha-helical with a preference for positively charged amino acids 
in the polar phase of the helix and varying hydrophobic arcs in the range 100–260°. The method to generate 
this library was included in the python package modlAMP as the class AmphipathicArc (modlamp.sequences.
AmphipathicArc).

•	 Gradient library. The Gradient library was designed using the same procedure as the Amphipathic Arc library 
but with an additional hydrophobic gradient in the peptide structure from the N- to the C-terminus. For this, the 
amino acids in the C-terminal third of the peptide sequence were substituted with hydrophobic amino acids. In 
the modlAMP package, this was achieved by the method make_H_gradient in the modlamp.sequences.Amphip-
athic Arc class.

Simulated molecular evolution.  The simulated molecular evolution (SME) algorithm is based on the (1, λ)  
evolution strategy44 in which λ mutated sequences (offspring) are generated from a parent sequence22,23,25. The 
offspring was scored according to a fitness function, which was defined as the experimentally determined pep-
tide anticancer activity and selectivity with respect to non-transformed cells. The best offspring were selected 
as a parent for the following optimization iteration. The amino acid mutations were generated according to an 
amino acid similarity matrix that has been row-normalized (dij) to allow for a pseudo-probability calculation of 
the amino acid transitions (Eq. 7). Here, the Grantham amino-acid similarity matrix was utilized39. The amino 
acids cysteine and methionine were excluded from the mutation matrix to avoid potential peptide cyclization and 
facilitate peptide synthesis.

∑
σ σ

→ =





−












−






.P i j exp

d
exp

d
( )

2
/

2 (7)

ij

j

ij
2

2

2

2

where σ is a strategy parameter that controls the distance of the offspring sequences to the parent sequence and, 
thus, the sequence diversity among the offspring. The σ strategy parameter was set to 0.1 for the two initial SME 
iterations. Sequence diversity was characterized by the Shannon entropy45 (H) of the residue distribution among 
the offspring (Eq. 8), where pi corresponds to the frequency of amino acid i in a certain sequence position. The 
Shannon entropy values were normalized to [0, 1]. The simulated molecular evolution strategy and Shannon 
entropy calculation were programmed with Python v2.7.

∑= .
=

H p log p
(8)i

i i
1

20

2
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